
SENRA Academic Publishers, British Columbia

Vol. 8, No. 2, pp. 2943-2954, June 2014

Online ISSN: 1920-3853; Print ISSN: 1715-9997

TAIL TOLERANCE OF WEB SERVICES SOLUTION BUILT ON

REPLICATION ORIENTED ARCHITECTURE (ROA)

*Godspower O Ekuobase
1
 and Ifeanyichukwu E Anyaorah

2

1
Department of Computer Science, University of Benin, Benin City, Edo State

2
Department of Computer Science, Auchi Polytechnic, Auchi, Edo State, Nigeria

ABSTRACT

Guaranteed responsiveness of Web Services solutions may not be possible on a large scale, if the solutions are not tail

tolerant i.e. able to consistently keep latency within reasonable limit. Software techniques that tolerate latency variability

and in particular, tail latency are vital to building responsive large-scale Web services solutions. Replication Oriented

Architecture (ROA) though proposed to help application programmers build scalable Web Services solutions appears

capable of mitigating latency variability and tail latency. Consequently, we investigated ROA for tail tolerance. To do

this, we built two ATM Web Services solution using Java technology – the first was not built on ROA (conventional

solution) but the other was built on ROA (ROA solution). These Web Services solutions were subjected to load

performance test using Apache JMeter. The results showed that the tail tolerance of Web Services solution built on ROA

is significantly better than its equivalent conventional solution. Specifically, we established that ROA is capable of

improving the tail tolerance of Web Services solution by about 4.60% with 96% confidence. The results also affirm the

scalability capability of ROA.

Keywords: ROA, latency variability, tail tolerance, java EE and web services.

INTRODUCTION

Scalability of Web Services is vital to its large scale

deployment (Ekuobase and Onibere, 2011). However,

guaranteed responsiveness of web services solutions may

not be possible on a large scale, if the solutions are not

tail tolerant (Dean and Barroso, 2013). Tail tolerant

systems are systems that tolerate or mitigate latency

variability including high tail-latency i.e. rare outrageous

response times (Dean and Barroso, 2013). High tail-

latency is therefore a serious threat to a responsive large

scale Web Services solution.

Several techniques basically centered on replication have

been proposed to curb high tail-latency in online service

systems/applications (Dean and Barroso, 2013). These

systems/applications are seriously prone to the problem of

latency variability and tail latency. However, none of

these techniques appears to target building responsive

large scale Web Services solution (service applications

built on the middle ware architecture called web services).

Web Services solution has a unique nature of

stateful/conversational asynchronous distributed

orientation and use of TCP based technology such as

SOAP (Baldoni et al., 2002; Ekuobase and Onibere, 2011,

2013; Ekuobase and Ebietomere, 2012). This drew our

attention to the server-side software architecture –

Replication Oriented Architecture (ROA) proposed by

Ekuobase and Onibere (2011) which is aimed at helping

application programmers build scalable Web Services

solution. However, a critical examination of ROA in our

domain of interest – latency variability and tail tolerance,

exposed the need to also authenticate ROA’s capability to

mitigate latency variability including high tail-latency.

The following observations encouraged this decision:

 The originators of ROA (Ekuobase and Onibere,

2011) only saw latency variability (guaranteed

responsiveness) as an inherent scalability attribute

(Ekuobase and Ebietomere, 2012) but never

investigated it specifically for latency variability

much less high tail-latency (Ekuobase and Onibere,

2013); thus creating an impression that scalable (web

services) applications also guarantee responsiveness.

 Round the clock guaranteed responsiveness is a

critical attribute of tail-tolerant systems but they

could only give a 90% guarantee of 32% scalability

assurance.

Consequently, we investigated whether or not ROA

accommodates tail tolerance and if it does, by how much?

This is the essence of this project, to determine the tail-

tolerance capability of ROA.

The data collected, manipulated and interpreted were

basically response times i.e. the time needed to process a

query which is the time from sending a request until

receiving the response (Yang et al., 2006; Repp et al.,

2007). It is an important attribute of Web Services’

Performance (Yang et al., 2006; Repp et al., 2007).

According to the World Wide Web consortium (W3C),

performance is defined in terms of throughput, response

*Corresponding author email: godspower.ekuobase@uniben.edu

Canadian Journal of Pure and Applied Sciences 2944

time, latency, execution time, and transaction time

(www.w3.org). However, execution time and latency are

sub-concepts of the W3Cs definition of response time

(Repp et al., 2007).

 A service’s response time for a request, R, can be

represented as shown below:

Response time(R) = Execution time(R) + Waiting time(R)

 (1)

The execution time is the duration of performing service

functionality. The waiting time is the amount of time for

all possible mediate events including message

transmissions between service consumers and providers

(Yang et al., 2006). From the service consumer

perspective, we can see response time as the duration

starting from the issue of a request to the end of the

receipt of a service’s response. On the other hand, service

providers see response time as not being different from

the execution time of a service, so it does not include all

possible mediate events, which are seen as incontrollable

variables during service execution (Yang et al., 2006).

Latency, which is an attribute of response time, is defined

as the delay between the start of a message transmission

from one process and the beginning of its receipt by

another. It can be measured as the time required in

transferring an empty message (Coulouris et al., 2012). In

its general sense, it covers; (1) the time taken for the first

bit of a string of bits transmitted in a distributed system to

reach its destination. (2) The delay in accessing resources,

which increases significantly when the system is heavily

loaded, and (3) The time taken by the system’s

communication services at both the sending and the

receiving processes, which varies according to the current

load on the system (Coulouris et al., 2012).

The data transfer rate (speed at which data can be

transferred between the two resources in distributed

systems once transmission or message passing has begun,

usually quoted in bits per second) is also a contributing

factor to performance. It is determined primarily by

physical characteristics, whereas latency is determined

primarily by software overheads, routing delays and a

load-dependent statistical element arising from conflicting

demands for access to transmission channels. Considering

that many of the messages transferred between processes

in distributed systems are small in size; latency is

therefore often of equal or greater significance than the

transfer rate in determining performance (Coulouris et al.,

2012). Thus, Web Services solution’s architecture like

ROA should be able to mitigate latency variability and

present to the service consumers a consistent response

time that is within an acceptable standard.

Keeping latency consistent within reasonable limit,

thereby keeping the tail of latency distribution short, is a

challenge to Web Services solutions as the size and

complexity of the system scales up or as overall use

increases (Dean and Barroso, 2013). Latency variability

results from occasional high-latency episodes that tends to

overshadow the overall service performances of large

scale systems/applications. Software techniques that

tolerate latency variability are vital to building responsive

large-scale Web services (Dean and Barroso, 2013).

Factors that may encourage variability in latency include

(Dean and Barroso, 2013):

 Sharing of systems resources such as CPU cores,

processor caches, memory bandwidth etc. between

and within applications.

 Usage of systems resources by background daemons.

 Global resource sharing by applications running on

machines.

 Periodic maintenance activities.

 Multiple layers of queuing in intermediate resource

such as servers and network switches.

 Garbage collection

 Energy management due to switching between

inactive power saving modes and active modes

Dean and Barroso (2013) established that it is not feasible

to eliminate latency variability completely and hence

introduced two tail-tolerant techniques that mask or work

around temporary latency deviations. The techniques are

of two classes: the Within-Request Short-Term

Adaptations and the Cross-Request Long-Term

Adaptations.

Within-Request Short-Term Adaptations (WRSTA)

This class of techniques basically deploys multiple

replicas of data items to provide additional throughput

capacity and maintain availability in the presence of

failures. One challenge posed by WRSTA is that it is

basically suited for read-only and loosely consistent

datasets, and is effective only when the phenomena that

causes variability does not tend to simultaneously affect

multiple request replicas. The techniques under this class

include Hedged and Tied requests:

Hedged requests: Here a user send the same request to

multiple replicas (e.g. servers) and use the results from

whichever replica that responds first. The client first send

the request to the replica believed to be the most

appropriate but then falls back on sending a secondary

request after a brief delay. Once a response is received,

other requests are cancelled.

Tied requests: Here a request is simultaneously queued

in multiple replicas. The replicas communicate with one

another concerning the status of the resultant responses.

An executing server sends a cancellation message to the

other servers. Delay interval can be introduced to avoid

sending the request at the same time.

Ekuobase and Anyaorah 2945

Observe that these techniques will likely congest

transmission channels further and result in wastage of

computational resources. Besides, they defy a necessary

property of replication - transparency (Coulouris et al.,

2012; Ekuobase and Onibere, 2011).

Cross-Request Long-Term Adaptations (CRLTA)

These techniques are suited for reducing latency

variability caused by coarse-grained phenomena such as

service-time variations and load balancing. They include:

Micro-Partitions: The systems generate many more

partitions than there are machines in the service, then do

dynamic assignment and load balancing of these

partitions to particular machines.

Selective Replication: This is an enhancement of the

micro-partitioning scheme, it detects items that are likely

to cause load imbalance and create additional replicas of

these items. Load balancing systems can then use the

additional replicas to spread the load of these hot micro-

partitions across multiple machines without having to

actually move the micro partitions.

Latency-Induced Probation: Here machines with high

latency are placed on probation and reincorporated when

its latency has improved.

Though CRLTA addresses the problem of transparency,

resource wastage and congestion of transmission media, it

is however difficult to implement. Besides, they are more

oriented towards handling latency at the systems level and

not at the application level. A situation we choose to refer

to as macro and micro latency respectively. ROA appears

to be more oriented towards handling micro latency.

MATERIALS AND METHODS

The following sub-section describes the hardware and

software tools as well as the process used in this research.

Hardware Tools

A notebook computer (HP Pavilion dv6 Notebook PC,

Intel® Core(TM) i3 CPU @ 2.13 GHz 2.13 GHz, 4.0GB

of RAM and 300GB of Hard Disk) was used not only in

development and testing of the Web Services solution but

also to carry out performance test to check for latency

variability and tail tolerance. It also served as host to the

software used and developed in this research. A lower

configuration may not conveniently cope with the huge

size and nature of our development platform as well as the

high computational resource requirements for executing

our applications and testing them for tail tolerance.

Software Tools

We shall discuss software tools under Operating System,

Development Platform, Language, Integrated

Development Environment (IDE) and Packages.

 Operating System: We settled for Microsoft

Windows 7 Home Premium edition which worked

seamlessly with the other tools used in the research. The

Operating System enabled our applications and other

software tools to interact with the machine and tap its

computational and peripheral resources.

 Development Platform: The choice of Java EE

(Jendrock et al., 2006) as our development platform for

building the Web Services solution in preference to the

.NET platform is because Java EE is non-proprietary and

it rivals with .NET platform as the dominant application

developer’s platform for enterprise applications in general

and Web Services solution in particular (Vawter and

Roman, 2001; Williams, 2003; Birman, 2005). Also our

prior comfortable programming experience in Java

boosted our choice of Java EE.

 Language: Language here covers programming

language, modeling language and Database Management

System (DBMS). Java 7.0 was the preferred programming

language of choice since the application was built on Java

EE platform which has support for only Java. Java

Persistence Query Language (JPQL), a version of the

Structured Query Language (SQL) was adopted because

of its rich Application Programming Interfaces (APIs) for

interacting with databases. Our choice of Objectdb as our

DBMS for building and managing the databases was

based on its very good performance and seamless

compatibility with Java and Netbeans – our Integrated

Development Environment of choice.

 Integrated Development Environment (IDE): We

have several IDEs that support Java and these include

JBuilder, JCreator, Eclipse, and Netbeans. We chose

Netbeans (Netbeans 7.0) on the ground of familiarity

though it is not in any way less powerful than the others.

IDE makes application development easy, nimble and

interesting.

 Packages: Argo UML (Ramirez et al., 2006; Tolke

and Klink, 2006) was used for the UML design. Though

there are many testing packages which include Apache

JMeter, JUnit, Grinder, Siege, JProfiler, selenium, Tsung,

and Load Runner; for request generation, load testing of

Web Services application and capturing of response time

which is vital to this research. We used Apache JMeter

(http://jakarta.apache.org/) because it is open source, Java

based and has rich and easy to use User Interface (UI).

Besides, it is the testing tool also used by the originators

of ROA (Ekuobase and Onibere, 2013). JMeter was added

as plug-in to Netbeans to ease its use with IDE. Microsoft

Excel was used for result computation. The Alentum

Canadian Journal of Pure and Applied Sciences 2946

Software Advanced Grapher was used for the graphical

reporting of results.

Process

Figure 1 depicts a tailored systems analysis and design

(SAD) research process used in this work.

We relied on the agile software development

methodology established by Ekuobase and Onibere (2012,

2013) as the most appropriate for the project. Our test

software development project of choice is the Automated

Teller Machine (ATM) Fund Transfer System. This

choice is predicate on the fears raised by Ekuobase and

Onibere (2011) and the features of the ATM system also

exposed by Ekuobase and Onibere (2012, 2013). The

design of the ATM system as modelled by Ekuobase and

Onibere (2012, 2013) was adopted. A Web Services

solution was built using appropriate APIs of the Java

platform using Netbeans 7.0 IDE. The solution consists of

five endpoint replica built on ROA. We chose to

implement only the five endpoint replica of ROA since it

gave the optimum scalability result for our test problem –

the ATM Fund Transfer Service (Ekuobase and Onibere,

2013). Besides, the five endpoint replica solution’s

computational strength data appears more regular

(Ekuobase and Onibere, 2013). We also built a similar

web services solution using the conventional approach

void of ROA.

We, however used a different set of Java APIs for the

implementation of the prototype ATM Fund Transfer

system on ROA. The new set of implementation API’s

were Enterprise Java Bean (EJB), Java API for XML Web

Services (JAX-WS), Java Message Service (JMS),

Message Driven Bean (MDB) and Java Persistent API

(JPA). These APIs were selected to design the

implementation equivalence of ROA depicted in figure 2.

The choice of these APIs is predicate on the drive not

only to refine the implementation of ROA but also to

demonstrate that ROA can be realised in several ways

using diferrent technology and platforms. In particular,

JPA a relatively new Java API handles how relational

data is mapped to persistent entity objects, how these

objects are stored in a relational database, and how an

entity’s state is persisted. In this realization, the JAX-WS

receives a SOAP request, implicitly deserializes the

request and, using the round robin mechanism, enqueues

the resultant data in a JMS queue for some queues defined

by the number of replicas; each replica has its own queue.

A replica, implemented as MDB, listens and fetches the

data in its JMS queue that it is statically bound to, using

the MDB onMessage method. The replica then invokes

the EJB that performs the business logic and with help of

the JPA persist in memory (database) the computational

state of the operation performed.

For the conventional implementation of the system i.e.

implementation not based on ROA, we made use of JAX-

WS, EJB and JPA as depicted in figure3. The EJB and

JPA allow the web services to seamlessly communicate

with the database. Observe that the selected APIs for the

ROA implementation have JMS and MDB, in addition,

that were used to realize the replicas in ROA. The use of

JAX-WS for the ROA implementation as with the

conventional implementation is particularly soothing

because of the criticism that the ROA implementation

equivalent used by Ekuobase and Onibere (2012, 2013)

does not realize a Web Services solution but just a service

solution. Besides, this ROA implementation is more

coarsely grained than that of Ekuobase and Onibere

(2012, 2013).

Start

Testing/Data

Capturing
Result Analysis /

Recommendation

Fluid Design

API

Selection

Implementation

Model Implementation

Fig.1. The Research Process.

Ekuobase and Anyaorah 2947

We also made us of a small sized database built using

ObjectDB an open source Object Database Management

System (ODBMS) for about 30 account holders with a

varying fictitious amounts in the accounts. The software

development and deployment environment was Netbeans

7.0 with GlassFish 3.1 as the server.

Codes for the Conventional and ROA implementations

will be supplied on request.

These systems are all server side applications and we

therefore need a client to consume them. Apache JMeter

played this role. Apache JMeter (Halili, 2008) is not only

a load generator but a load and performance testing tool.

MDB &

EJB

MDB &

EJB
MDB &

EJB

JAX-WS & JMS

Web

service
. . .

JPA

Database

Web service Clients

Request Response

Fig. 2. A ROA Implementation Equivalence using Java Technology.

Web

service

JPA

Database

Web service Client

Request
Response

JAX-WS & EJB

Fig. 3. A Conventional Implementation of Web Services using Java Technology.

Canadian Journal of Pure and Applied Sciences 2948

It can handle variety of request from HTTP request to

SOAP request depending on how its test plan is prepared.

We subjected the web services solutions to performance

test under varying loads ranging from five to 10000

requests per 5 seconds using Apache JMeter. The

resultant data samples’ median, maximum, minimum,

average and 90th percentile response times for each of the

solutions were collected. We then entered this data into

Alentum Grapher for appropriate graphical presentation.

The maximum response times value were further

Table 1. Data Capture for Conventional Web Services Solution.

DATA CAPTURE FROM IMPLEMENTATION WITHOUT ROA

NO OF

SAMPLES
AVERAGE MEDIAN

90TH

PERCENTILE
MINIMUM MAXIMUM

5 4 4 6 4 6

10 3 3 4 2 6

20 4 4 7 3 7

30 3 3 4 3 10

40 4 4 4 3 17

50 4 3 4 2 35

100 3 3 4 2 15

200 3 3 3 2 154

300 5 3 4 2 208

400 5 3 4 2 209

500 8 3 6 2 317

1000 27 4 16 2 2386

2000 42 14 92 2 2478

3000 291 321 514 2 4411

4000 563 569 944 3 5428

5000 791 790 1420 3 6299

10000 1930 1753 4230 3 10884

Table 2. Data Capture for the ROA Web Services Solution.

DATA CAPTURE FROM ROA IMPLEMENTATION

NO OF

SAMPLES
AVERAGE MEDIAN

90TH

PERCENTILE
MINIMUM MAXIMUM

5 3 3 3 3 6

10 5 4 8 3 9

20 4 4 7 2 10

30 6 6 6 4 16

40 3 3 4 2 5

50 3 3 5 2 22

100 3 3 4 2 5

200 2 3 3 2 11

300 3 3 4 2 18

400 3 3 4 2 23

500 3 3 3 2 22

1000 3 3 4 2 68

2000 6 3 9 1 227

3000 8 4 19 1 163

4000 18 7 41 1 423

5000 30 9 80 1 577

10000 25 10 51 1 1045

Ekuobase and Anyaorah 2949

subjected to statistical analysis and interpretation; since

maximum response times best captures the highest tail

latency of applications.

In particular, we ascertained the tail tolerance significance

of the Web Services solution built on ROA over that built

using the conventional approach. Since the two classes of

Web Services solution were built on the same problem

and platforms but with different development approaches,

the student t-distribution for difference of two means was

found most appropriate and adopted. The samples x and y

are the maximum response times for the conventional and

ROA solutions respectively. Let x and y be normally

distributed with means µx and µy, and variance ơx and ơy

respectively. The problem is to decide whether or not the

use of ROA will mitigate the tail latency of Web Services

solution.

Consequently, we tested the hypothesis H0: µx = µy (no tail

tolerant significance between conventional and ROA

systems), H1: µx > µy (ROA systems are significantly tail

tolerant) and H2: µx < µy (conventional system are

significantly tail tolerant).

RESULTS AND DISCUSSION

After configuration the JMeter, we executed the package

for varying number of threads (sample size) for each of

Fig. 4. The Mid-response Time of Conventional vs. ROA Web Services Solutions.

Fig. 5. The Average-response Time of Conventional vs. ROA Web Services Solutions.

Canadian Journal of Pure and Applied Sciences 2950

the two system implementations and the valuable data:

average, median (mid), 90
th

 percentile line, minimum and

maximum response times; all in milliseconds were

collected. Tables 1 and 2 contain these data for the

conventional and ROA web services solution

respectively.

For ease of appreciation, figures 4 to 8 depict graphically

the relative behaviour of both applications with increasing

number of request per unit time as explained underneath

each of the figures.

Figure 4 captures the mid response times of both the

conventional web services solution and those of the web

services solution built on ROA with increasing number of

request per unit time. Observe the near constant response

time of the ROA solution even with increasing request per

unit time as against that of the conventional solution

which assumed a near exponential increase of response

time with increasing request per unit time. The

implication of this is that web services solutions built on

ROA is far more stable and hence more scalable than its

conventional counterparts. This affirms Ekuobase and

Onibere (2013) scalability authentication of ROA. Also

their maximum sample size was 2000 requests per 5

seconds against ours with a maximum sample size of

10000 requests per 5 seconds. Note that the behaviour of

the conventional solution against the ROA solution

Fig. 6. The Maximum and Minimum Response Time of Conventional vs. ROA Web Services Solutions.

Fig. 7. The 90

th
 Percentile Response Time of Conventional vs. ROA Web Services Solutions.

Ekuobase and Anyaorah 2951

skyrocketed particularly after the 2000 mark. An

indication that the 32% scalability performance of web

services solution built on ROA over the conventional

solution is the least it could be. Mid response time is

however not a useful indicator of latency variability or tail

latency.

Figure 5 captures the average response time of the

conventional and ROA web services solutions with

increasing number of requests per unit time. It appears not

to be different from the graph in figure 4 and therefore

same analysis holds for both.

Figure 6 captures the maximum and minimum response

time with increasing number of requests per unit time for

both the conventional and ROA web services solutions.

Note that the difference between the maximum and

minimum for the conventional web services solution is far

wider than that of the web services solution built on ROA.

In particular, the response time for the ROA solution

hardly exceeded 0.5seconds. This shows that web services

solution built on ROA has tighter latency variability or

guaranteed responsiveness against their conventional

counterparts.

Fig. 8. The 90

th
 Percentile and Maximum Response Time of Conventional vs. ROA Web Services Solutions

Table 3. Showing the computation of ns
2
for each web services solution.

S/n
Conventional Tail

Latency (x)
ROA Tail Latency (y)

1 6 3715369.633 6 22464.71972

2 6 3715369.633 9 21574.42561

3 7 3711515.574 10 21281.6609

4 10 3699965.398 16 19567.07266

5 17 3673084.986 5 22765.48443

6 35 3604413.927 22 17924.48443

7 15 3680755.104 5 22765.48443

8 154 3166724.927 11 20990.89619

9 208 2977451.751 18 19011.54325

10 209 2974001.692 23 17657.71972

11 317 2613167.339 22 17924.48443

12 2386 204729.6332 68 7723.307958

13 2478 296448.2215 227 5057.719723

14 4411 6137860.516 163 50.66089965

15 5428 12211324.69 423 71351.83737

16 6299 19057333.46 577 177340.0727

17 10884 80110923.75 1045 790530.1903

 1933.529412 155550440.2 155.8823529 =1275981.765

Canadian Journal of Pure and Applied Sciences 2952

Figure 7 captures the 90
th

 percentile response time of

conventional vs. ROA web services solutions with

increasing number of request per unit time. It appears not

to be different from the graph in figures 4 and 5 and

therefore same analysis holds here too. Besides, the graph

also shows that web services solution built on ROA has

tighter latency variability or guaranteed responsiveness

against their conventional counterparts.

Figure 8 captures the 90
th

 percentile and maximum

response times of conventional vs. ROA web services

solutions with increasing number of request per unit time.

It obviously indicates that both applications are bedeviled

with the problem of tail latency with the ROA solution

however more tail tolerant. Whether this tail tolerant

advantage of ROA web services solution over its

conventional counterpart is significant and if it is, by what

degree is however not obvious?

Statistical Analysis and Interpretation

It will be noted that the two sets of Web Services

solutions were built on the same platform, using the same

technology except that the ROA’s solution was built on

unique development architecture – ROA. It is also

important to note that the performance load test and

request generator was handled by the same package –

Apache JMeter, and configured the same way.

The samples x and y are the maximum response time (tail

latency) at varying but increasing request rates for the

conventional and ROA solutions respectively. Let x and y

be normally distributed with means µx and µy and

variance σx and σy respectively. The problem is to decide

whether or not the use of ROA will improve the tail

tolerance of Web Services solution. Consequently, we

tested the hypothesis H0: µx = µy (no tail tolerant

significance between conventional and ROA systems),

H1: µx > µy (ROA systems are significantly tail tolerant)

and H2: µx < µy (conventional system are significantly tail

tolerant); since tail tolerance is about mitigating tail

latency with increasing request per unit time.

It is safe to assume that σx = σy, and then apply the

formula below (Hoel, 1966):

 (2)

Where, t is the student’s t distribution for difference of

two means and every other elements of equation (2)

assume the conventional statistical use.

In our case, sample sizes are equal and equal to 17 i.e. nx

= ny = 17; therefore equation (2) can be rewritten as:

 (3)

Adopting the null hypothesis H0, we can rewrite equation

(3) as equation (4) below:

 (4)

but, ns
2
 = (5)

Table 3 shows the computation of ns
2
 for each solution:

conventional solution followed by solutions built on ROA

while table 4 shows the calculation details of t, for each

Web Services solution.

From the student’s t table (Hoel, 1966) the 0.02 critical

value of t is 2.224. Observe that the calculated t value

(2.3411022) is greater than 2.224, therefore, the

hypothesis H1: µx > µy is valid and hereby accepted. Thus,

tail tolerance of Web Services solution built on ROA is

significantly better than its equivalent conventional

solution.

Table 4. Showing the Computed t Value and Confidence

Limit for Conventional vs. ROA’s Solution.

Computed Value
ROA web services

solution

1777.6471

156826422

12523.036

0.1419502

t 2.3411022

k =

()/
759.3206

2.224 * k 1688.729

88.91811

3466.376

4.5987

It is also important we calculate the confidence limit for

µx - µy as ROA’s solution show significantly better tail

tolerance performance over its equivalent conventional

solution. Here equation (3) comes handy and in our case

96 percent confidence limits is given by:

|t| < 2.224 (6)

Ekuobase and Anyaorah 2953

Substituting (3) in (6), reduces (6) to:

 (7)

Where and are the lower and upper limits

respectively and are given by:

 (8)

 (9)

Table 4 also show these calculated value for the ROA’s

solution.

Consequently, we can only guarantee unit of increase

i.e. percent in tail tolerance performance, if ROA is

used to build Web Services solution. These results show

that ROA can improve tail tolerance of Web Services

solution by 4.60% with 96% confidence. This is the

maximum degree of significance that can be guaranteed.

CONCLUSION

Guaranteed responsiveness of Web Services solutions

may not be possible on a large scale, if the solutions are

not tail tolerant i.e. able to consistently keep latency

within reasonable limit. Software techniques that tolerate

latency variability and in particular, tail latency are vital

to building responsive large-scale Web services (Dean

and Barroso, 2013). However, such efforts directed at

making network applications tail tolerant are basically

oriented towards handling latency at the systems or

deployment level and not at the application or

development level. ROA though proposed to help

application programmers build scalable Web Services

solutions (Ekuobase and Onibere, 2011), appears capable

of mitigating latency variability and tail latency at the

application or development level. Consequently, we

investigated ROA for tail tolerance.

We realized a new ROA implementation equivalence also

using Java technology but with a different set of Java

APIs from that of Ekuobase and Onibere (2012, 2013).

This implementation equivalence appears more of a Web

Service implementation than theirs. We built two ATM

Web Services solution using Java technology – the first

was not built on ROA (conventional solution) but the

other was built on ROA (ROA solution). The choice of

the ATM system as the test problem was to investigate

ROA in its worst case scenario (Ekuobase and Onibere,

2011, 2012, 2013).

The graphical and statistical analysis of the resultant data

on subjecting the Web Services solution built on ROA to

load performance test using Apache JMeter compared to

the conventional solution showed that the tail tolerance of

Web Services solution built on ROA is significantly better

than its equivalent conventional solution. Besides, the

statistical analysis of the results shows that ROA is

capable of improving the tail tolerance of Web Services

solution by about 4.60% with 96% confidence. The

results also affirm the scalability capability of ROA

(Ekuobase and Onibere, 2013).

REFERENCES

Baldoni, R., Marchetti, C. and Termini, A. 2002. Active

Software Replication through a Three-tier Approach.

Proceedings of the 21
st
 IEEE Symposium on Reliable

Distributed Systems (SRDS). IEEE Computer. pp10.

Birman, K. 2005. Can Web Services Scale Up? IEEE

Computer. 38(10): 107-110.

Coulouris, G., Dollimore, J., Kindberg, T. and Blair, G.

2012. Distributed System: Concepts and Design.

Addison-Wesley, USA. pp1047.

Dean, J. and Barroso, LA. 2013. The Tail at Scale.

Communications of the ACM. 56(2):74-80.

Ekuobase, GO. and Ebietomere, EP. 2012. The Making of

Replication Oriented Architecture. Journal of Computer

Science. 23(2):71-78.

Ekuobase, G. and Onibere, E. 2011. Architecture For

Scalable Web Services Solution. Canadian Journal of

Pure and Applied Sciences. 5(1):1449-1453.

Ekuobase, GO. and Onibere, EA. 2012. Web Services

Solution on Replication Oriented Architecture (ROA).

Journal of the Ghana Science Association. 14(2):25-34.

Ekuobase, GO. and Onibere, EA. 2013. Scalability of

Web Services Solution Built on ROA. Canadian Journal

of Pure and Applied Sciences. 7(1):2251-2270.

Halili, E. 2008. Apache JMeter: a practical beginner's

guide automated testing and performance measurement

for your websites. Packt Publishing, United Kingdom.

pp129.

Hoel, PG. 1966. Introduction to Mathematical Statistics,

(3rd edi.). John Willey & Sons, USA. pp427.

Jendrock, E., Ball, J., Carson, D., Evans, I., Fordin, S. and

Haase, K. 2006. The Java EE 5 Tutorial (3
rd

 edi.). Sun

Microsystems, USA. pp1304.

Ramirez, A., Vanpeperstraete, P., Rueckert, A., Odutola,

K., Bennett, J., Tolke, L. and van der Wulp, M. 2006.

Argo UML User Manual: A Tutorial and Reference

Description. Open Content, USA. Also available online at

http://www.opencontent.org/openpub/. pp386.

Repp, N., Berbner, R., Heckmann, O. and Steinmetz, R.

2007. A cross-Layer Approach to Performance

Canadian Journal of Pure and Applied Sciences 2954

Monitoring of Web Services. Emerging Web Services

Technology. Birkhauser Verlag, Switzerland. Whitestern

Series:21-32.

Tolke, L. and Klink, M. 2006. Cook book for Developers

of ArgoUML: An Introduction to Developing ArgoUML.

University of California, USA. pp157.

Vawter, C. and Roman, E. 2001. J2EE vs.

Microsoft.NET: A Comparison of Building XML-based

Web Services. Sun Microsystems, USA. pp28.

Williams, J. 2003. The Web Services Debate: J2EE vs.

NET. Communication of the ACM. 46(6):59-63.

Yang, S. J., Zhang, J. and lan, BC. 2006. Service Level

Agreement-Based QoS Analysis for Web Services

Discovery and Composition. International Journal of

Internet and Enterprise Management. Inderscience. 1251-

1271.

Received: Feb 15, 2014; Accepted: April 3, 2014

